Quantcast
Channel: ROS Answers: Open Source Q&A Forum - RSS feed
Viewing all articles
Browse latest Browse all 222

How to find a good covariance matrix in robot_localizaiton

$
0
0
I am using gps data only to compute the position and velocity of robot. In other words, only /fix can be used. I choose utm_odometry_node in gps_common package to transform /fix to /odom and then I feed it to ekf_localization node and it works. In my experiment, the velocity direction of robot will be changed. But the velocity changes slowly from ekf_localization if I change velocity of the robot.Now the question is how to find a good covariance matrix to get the accurate velocity as soon as possible? input message: --- header: seq: 39697 stamp: secs: 993 nsecs: 600000000 frame_id: map child_frame_id: '' pose: pose: position: x: 492824.687572 y: 5527528.38954 z: 0.144843751748 orientation: x: 1.0 y: 0.0 z: 0.0 w: 0.0 covariance: [1e-08, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1e-08, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1e-08, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 99999.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 99999.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 99999.0] twist: twist: linear: x: 0.0 y: 0.0 z: 0.0 angular: x: 0.0 y: 0.0 z: 0.0 covariance: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] --- launch file: [true, true, false, false, false, false, false, false, false, false, false, false, false, false, false] a part of my covariance matrix: [true, true, false, false, false, false, false, false, false, false, false, false, false, false, false][1e-4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.06, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.03, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.03, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.06, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.025, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.025, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.04, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.015][1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9] output of ekf: --- header: seq: 39422 stamp: secs: 1315 nsecs: 64000000 frame_id: map child_frame_id: base_link pose: pose: position: x: 492816.442878 y: 5527539.17343 z: 0.0 orientation: x: 0.0 y: 0.0 z: -0.75453971807 w: 0.65625438197 covariance: [9.975232789043764e-09, -2.7211403317856447e-13, 0.0, 0.0, 0.0, -2.024543778171654e-07, -2.721140331787132e-13, 9.978358886778933e-09, 0.0, 0.0, 0.0, 4.2968139320611683e-07, 0.0, 0.0, 9.99334221236771e-07, 1.0797297191010833e-14, 2.43905109137402e-15, 0.0, 0.0, 0.0, 1.0797297191010833e-14, 9.986702151855713e-07, -3.955545639126125e-20, 0.0, 0.0, 0.0, 2.4390510913740193e-15, -3.955545639121582e-20, 9.986702151857375e-07, 0.0, -2.0245437781715935e-07, 4.296813932061041e-07, 0.0, 0.0, 0.0, 6.92441896268007] twist: twist: linear: x: -0.110295949949 y: 0.487712246076 z: 0.0 angular: x: 0.0 y: 0.0 z: -0.0284413512762 covariance: [1.6395474509339376, 0.36944552744331216, 0.0, 0.0, 0.0, 0.49711919164115514, 0.36944552744331216, 0.08551321315239684, 0.0, 0.0, 0.0, 0.1121471685471008, 0.0, 0.0, 9.990019961300908e-07, -9.63676432645194e-24, 2.5526644039518165e-23, 0.0, 0.0, 0.0, -9.636764326451947e-24, 9.960317146497115e-07, 5.937695665719259e-28, 0.0, 0.0, 0.0, 2.5526644039518177e-23, 5.937688657720329e-28, 9.960317146497115e-07, 0.0, 0.49711919164115503, 0.11214716854710079, 0.0, 0.0, 0.0, 0.20076052394621322] --- Is there any strategy to find the good covariance matrix?

Viewing all articles
Browse latest Browse all 222


<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>